VII SEMANA UNIVERSITÁRIA DA URCA - XXV Semana

de Iniciação Científica da URCA e VIII Semana de Extensão da URCA

12 a 16 de dezembro de 2022 Tema: "DIVULGAÇÃO CIENTÍFICA, INDEPENDÊNCIA E SOBERANIA NACIONAL"

SUSTENTABILIDADE NA PRODUÇÃO DE HIDROGÊNIO VERDE NO BRASIL A PARTIR DA GERAÇÃO DE ENERGIA SOLAR FOTOVOLTAICA

Wellington do Carmo Lima¹, Andrezza Pereira de Matos², Rodolfo José Sabiá³, Glauco Demóclito Tavares De Barros⁴

Resumo: O gás hidrogênio é uma fonte de energia limpa que vem ganhando destaque no meio acadêmico e industrial e tem potencial para ser um contribuinte significativo no processo de descarbonização da economia, juntamente com outras fontes de energias renováveis. A produção de gás hidrogênio ocorre quando a água é eletrolisada, produzindo átomos de oxigênio que são ecologicamente corretos, ao contrário dos processos que usam combustíveis fósseis. Desta forma, com o objetivo de avaliar a sustentabilidade da produção de hidrogênio verde a partir da geração de energia solar fotovoltaica no Brasil, foi desenvolvida uma pesquisa bibliométrica de caráter exploratório com abordagem qualitativa. De acordo com a IEA, mais de 20 países estão desenvolvendo suas próprias estratégias de produção de hidrogênio. Do ponto de vista sustentável e ambiental a substituição de combustíveis fósseis por hidrogênio verde trará benefícios inigualáveis, reduzindo significativamente as emissões de dióxido de carbono na atmosfera. No entanto, políticas públicas devem ser implementadas para ampliar o uso de energia renovável e reduzir o custo de produção de hidrogênio a partir de células PEM.

Palavras-chave: Hidrogênio Verde. Energia Renovável. Próton Exchange Membrane Fuel Cell. Energia Solar Fotovoltaica.

1. Introdução

Atualmente, países de todos os continentes buscam novos métodos para manter suas respectivas matrizes energéticas renováveis, além de proporcionar o desenvolvimento e incentivar novas iniciativas para a descarbonização da economia. Nessa circunstância, as energias renováveis dispõem de inúmeras opções para atender às crescentes demandas energéticas. Tendo em vista que o hidrogênio é o elemento mais abundante na Terra e com potencial energético, por que não o utilizar como combustível para suprir as necessidades da população?

O hidrogênio é usualmente encontrado como parte de outro composto e pode ser produzido a partir de uma variedade de recursos, incluindo combustíveis fósseis, biomassa e eletrólise da água. O impacto ambiental e a eficiência energética do hidrogênio dependem de como ele é produzido.

A utilização de energias renováveis, principalmente a energia solar fotovoltaica, foco deste estudo, para obtenção do hidrogênio verde através da eletrólise da água é um processo limpo, eficiente e prático, e logo, a

¹ Universidade Regional do Cariri, email: wellington.docarmolima@urca.br

² Universidade Regional do Cariri, email: andrezza.matos@urca.br

³ Universidade Regional do Cariri, email: rodolfo.sabia@urca.br

⁴ Universidade Regional do Cariri, email: glauco.barros@urca.br

VII SEMANA UNIVERSITÁRIA DA URCA - XXV Semana

de Iniciação Científica da URCA e VIII Semana de Extensão da URCA

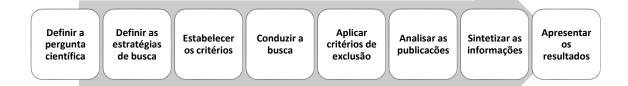
12 a 16 de dezembro de 2022 Tema: "DIVULGAÇÃO CIENTÍFICA, INDEPENDÊNCIA E SOBERANIA NACIONAL"

disseminação da utilização desse combustível na economia trará benefícios inigualáveis para o meio ambiente, especialmente relacionado à redução de emissão de gás carbônico na atmosfera.

2. Objetivo

Avaliar a sustentabilidade da produção de hidrogênio verde a partir da geração de energia solar fotovoltaica no Brasil.

3. Metodologia


Quanto aos objetivos, este estudo foi definido como exploratório com abordagem qualitativa. Como regra geral, a pesquisa exploratória é o tipo de pesquisa realizada quando o tema escolhido é pouco explorado, dificultando a formulação e implementação de hipóteses. Muitas vezes, essa pesquisa é o primeiro passo para um estudo mais aprofundado (OLIVEIRA, 2013).

Quanto ao método de pesquisa, sugere-se que a bibliometria é um método de pesquisa que identifica um punhado de periódicos-chave que contêm os artigos mais significativos relacionados a um assunto. O método foi desenvolvido com base na prática da comunidade científica de fornecer bibliografias com qualquer artigo (BOTELHO, 2011).

A revisão bibliométrica possibilita coletar, selecionar e analisar criticamente os estudos disponíveis em um banco de dados, através de um período específico. As fontes de um estudo de bibliometria são, portanto, artigos oriundos de estudos originais. Para o prosseguimento dos objetivos desta pesquisa, a revisão bibliométrica é importante, pois permite que o pesquisador selecione e analise o território intelectual existente e formule uma questão de pesquisa, para desenvolver o corpo de estudo proposto.

Portanto, o método utilizado foi uma revisão bibliométrica (SILVA *et al.*, 2017; SAMPAIO; MANCINI, 2007), que foi realizada na ordem apresentada na Figura 1, que deve garantir a reprodutibilidade do processo e dos resultados encontrados.

Figura 1: Sequência de realização da revisão sistemática da literatura utilizada

Fonte: Autores (2022) Adaptado de Silva et al. (2017)

A pergunta científica limitou-se a identificar a proporção territorial da produção de hidrogênio verde a partir do processo de eletrólise da água. A base de dados utilizada foi a Scopus, do grupo editorial Elsevier, um dos maiores editores mundiais da literatura científica. A título de busca "production of green hydrogen with water electrolysis", as publicações entre 2018 e 2022, os tipos de

VII SEMANA UNIVERSITÁRIA DA URCA – XXV Semana

de Iniciação Científica da URCA e VIII Semana de Extensão da URCA

12 a 16 de dezembro de 2022 Tema: "DIVULGAÇÃO CIENTÍFICA, INDEPENDÊNCIA E SOBERANIA NACIONAL"

produção: artigos e capítulos de livros, com palavras chaves: Hydrogen Production, Electrolysis, Water Electrolysis, Hydrogen, Hydrogen Fuels, Solar Power Generation, Proton Exchange Membrane Fuel Cells (PEMFC), foram utilizados como critérios de busca.

A possibilidade de identificar os principais autores, quantidade de citações e quantidade de trabalhos possibilitou uma análise detalhada a respeito da produção de hidrogênio verde, a partir do processo de eletrólise da água com a Proton Exchange Membrane.

4. Resultados

Executados os critérios de busca citados anteriormente, foram obtidos 233 documentos. Os arquivos foram então exportados para o formato .CSV e executados no software vosviewer, a fim de se obter a visualização de rede bibliométrica, além da permissão da criação de redes de relações de citação, acoplamento bibliográfico, cocitação ou coautoria. O Resultado obtido na compilação dos dados exportados no vosviewer pode ser mais bem visualizado na figura 2 abaixo.

week theu p.

hear trian is yann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

trian y wann; in trian y wann; in this label.

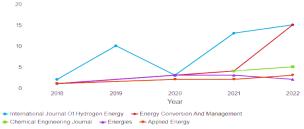

trian y wann; in trian y wann; in trian y wann; in trian y wann; in trian y

Figura 2: Resultado obtido no vosviewer

Fonte: Autores

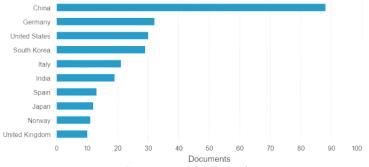
Ficou perceptível que houve um aumento exponencial em relação ao estudo e divulgação do tema em questão, entre os anos de 2020 e 2022, fator esse que exemplifica o fato de que países de todo o mundo estão buscando alternativas viáveis para descarbonização na economia vigente. O gráfico abaixo mostra o aumento de estudos sobre o hidrogênio verde nos últimos anos.

Figura 3: Aumento dos estudos sobre o hidrogênio verde nos últimos anos

Fonte: scopus (2022)

Foram identificados também os principais países com publicações a respeito do tema. Dentre a lista apresentada abaixo, destacam-se: China, Alemanha, Estados Unidos, Coreia do Sul e Itália. Ou seja, países que

VII SEMANA UNIVERSITÁRIA DA URCA - XXV Semana


de Iniciação Científica da URCA e VIII Semana de Extensão da URCA

12 a 16 de dezembro de 2022 Tema: "DIVULGAÇÃO CIENTÍFICA, INDEPENDÊNCIA E SOBERANIA NACIONAL"

apresentam significativo crescimento econômico e social, industrialização recente e crescente, além de aumento expressivo no valor monetário dos bens produzidos.

Figura 4: Principais Países com publicações a respeito do Hidrogênio Verde

Fonte: scopus (2022)

GERBENS-LEENES *et al.* (2008) realizaram cálculos de pegada hídrica para energia a partir de biomassa em Países como: Holanda, Estados Unidos, Brasil e Zimbábue. Neste estudo, foi calculada a pegada de energia de biomassa de várias fontes, como soja, cana-de-açúcar, óleo de palma etc. O resultado mostra a média de todas essas fontes, resultando no valor da pegada energética de biomassa do país (FERREIRA, 2014). A tabela abaixo mostra os valores calculados por GLEICK e os valores de pegada de biomassa calculados por GERBENS-LEENES *et al.* (2008).

Tabela 1: Pegada Hídrica de fontes de energia primárias (m³/GJ)

Fonte de Energia Primária	Pegada Hídrica Média (m³/GJ)
Energia eólica	0
Energia nuclear	0,1
Gás Natural	0,1
Carvão	0,2
Energia Térmica Solar	0,3
Petróleo	1,1
Hidroeletricidade	22
Biomassa Brasil	61

Fontes: GLEICK, 1994 apud GERBENS-LEENES et al., 2008 B GLEICK ,1993 e SHIKLOMANOV, 2000.

5. Conclusão

De acordo com a Tabela de Pegada Hídrica de fontes de energia primárias (m^3/GJ) a pegada hídrica da energia solar é consideravelmente baixa comparada às principais fontes energéticas brasileiras. Os volumes de água necessários para alimentar o processo de eletrólise são da mesma ordem de grandeza de outros tipos de produção de energia, rondando valores entre os 9 litros/kg H_2 até ao máximo de 22,4 litros/kg H_2 anunciados por fornecedores do equipamento (SIMÕES, 2021). Esses valores variam dependendo do tipo de

VII SEMANA UNIVERSITÁRIA DA URCA – XXV Semana

de Iniciação Científica da URCA e VIII Semana de Extensão da URCA

12 a 16 de dezembro de 2022 Tema: "DIVULGAÇÃO CIENTÍFICA, INDEPENDÊNCIA E SOBERANIA NACIONAL"

tecnologia, da capacidade instalada, da empresa fornecedora ou a fonte de água utilizada. O aumento do volume deve-se ao facto da água que alimenta o processo de eletrólise ser muito alto.

Em termos médios, as necessidades diárias de água são de $5.70m^3/MWh\ H_2$ para um eletrolisador alcalino e de $6.33m^3/MWh\ H_2$ para um PEM. Se o eletrolisador for alimentado com eletricidade gerada a partir de solar fotovoltaico, estima-se que a água necessária para limpeza dos painéis seja cerca de 3-4% da usada em eletrólise (SIMÕES, 2021).

6. Referências

ANEEL (2012) Resolução Normativa Nº 482. Agência Nacional de Energia Elétrica. Brasil. http://www2.aneel.gov.br/cedoc/ren2012482. pdf (Cons. 03/09/2018).

BOTELHO, Louise de Lira Roedel et al. Revisão bibliométrica sobre mudança organizacional e aprendizagem gerencial em uma organização intensiva em conhecimento. XXV Encontro da associação nacional de pós-graduação e pesquisa em administração, 2011.

FERREIRA, Fernanda França. Pegada hídrica da geração de energia hidrelétrica no Brasil–Um estudo de caso da AES Tietê SA. Federal University of Rio de Janeiro: Rio de Janeiro, Brasil, 2014.

GERBENS-LEENES, P.W; HOEKSTRA, A.Y.; TH VAN DER MEER. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply." Ecological Economics, 2008.

GLEICK, Peter H. Water, war & peace in the Middle East. Environment: science and policy for sustainable development, v. 36, n. 3, p. 6-42, 1994.

GLEICK, Peter H. Water in crisis. New York: Oxford University Press, 1993.

IEA - International Energy Agency. Hydrogen. Disponível em: < https://www.iea.org/fuels-and technologies/hydrogen>. Acesso em: 19/01/2022. OLIVEIRA, Maria Marly de. Como fazer pesquisa qualitativa. In: Como fazer pesquisa qualitativa. 2013. p. 232-232.

SAMPAIO, Rosana Ferreira; MANCINI, Marisa Cotta. Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Brazilian Journal of Physical Therapy, v. 11, p. 83-89, 2007.

SCOPUS - production of green hydrogen with water electrolysis. Disponível em: (https://www-

scopus.ez152.periodicos.capes.gov.br/search/form.uri?display=basic&zone=he ader&origin=#basic>. Acesso em: 06/07/2022.

SHIKLOMANOV, Igor A. Appraisal and assessment of world water resources. Water international, v. 25, n. 1, p. 11-32, 2000.

SIMÕES, Sofia et al. Água para a produção de hidrogénio verde (renovável) via eletrólise em Portugal. 2021.