V SEMANA UNIVERSITÁRIA DA URCA XXIII Semana de Iniciação Científica

07 a 11 de Dezembro de 2020 Tema: "Os impactos e desafios da pandemia COVID no ensino, pesquisa e extensão"

PERFIL QUÍMICO E AVALIAÇÃO IN VITRO DA PROPRIEDADE ANTI-ACETILCOLINESTERASE DO EXTRATO ETANÓLICO DE Auxemma glazioviana Taub.

Natália Kelly Gomes de Carvalho¹, Cícera Janaine Camilo², Carla de Fátima Alves Nonato³ Débora Odília Duarte Leite ⁴ Alexandro Rodrigues Dantas⁵ Emerson Vinicius Silva de Melo⁶ José Galberto Martins da Costa¹

Resumo: Introdução: Os inibidores da acetilcolinesterase são alvos terapêuticos no combate a doenças neurodegenerativas, como o Alzheimer. Devido a isso, tem-se intensificado a busca por novos produtos provenientes de plantas, que possam oferecer resultados efetivos com menores riscos aos pacientes. **Objetivo**: Identificar as principais classes de metabólitos secundários e avaliar o potencial de inibição da enzima acetilcolinesterase pelo extrato etanólico das cascas de *Auxemma glazioviana*. **Metodologia**: A prospecção química foi realizada através de reações qualitativas de coloração e precipitação. O bioensaio de acetilcolinesterase foi feito pelo método de Ellman através da micro-diluição do substrato e a enzima. **Resultados**: O extrato etanólico forneceu rendimento de 5,2 %. Há uma predominância de metabólitos secundários da classe dos flavonóides. No bioensaio de inibição da acetilcolinesterase o extrato obteve IC₅₀ de 25,43 ± 0,16 μg/mL. **Conclusão**: Com base nos resultados obtidos, pode-se concluir que o extrato de *A. glazioviana* possui importantes metabólitos secundários e moderado potencial de inibição da acetilcolinesterase.

Palavras-chave: A. glazioviana. Flavonóides. Inibição da acetilcolinesterase.

1. Introdução

A enzima acetilcolinesterase (AChE) é responsável por hidrolisar o neurotransmissor acetilcolina (ACh) nas sinapses colinérgicas no sistema nervoso. Esse processo é de fundamental importância para o funcionamento de inúmeras funções fisiológicas humanas (Araújo, Santos e Gonsalves 2016). Algumas doenças neurodegenerativas como Alzheimer estão relacionadas a degeneração do sistema colinérgico, devido principalmente a diminuição dos níveis plasmáticos de acetilcolina (Vinutha et al., 2007).

Estudos indicam que os inibidores da AchE são os alvos terapêuticos mais viáveis no tratamento/prevenção dessas enfermidades (Forlenza, 2005). Alguns medicamentos sintéticos utilizados no tratamento dessas doenças apresentam diversos efeitos colaterais danosos a saúde humana, como hepatotóxico e problemas gastrintestinais. Devido a isso, tem-se intensificado a busca por

¹ Universidade Regional do Cariri, email: natalia.gomes@urca.br

² Universidade Regional do Cariri, email: janainecamilo@hotmail.com

V SEMANA UNIVERSITÁRIA DA URCA XXIII Semana de Iniciação Científica

07 a 11 de Dezembro de 2020 Tema: "Os impactos e desafios da pandemia COVID no ensino, pesquisa e extensão"

princípios ativos provenientes de plantas capazes de inibir a AchE de forma segura e menos agressiva no organismo humano (Mota et al., 2012).

A espécie *Auxemma glazioviana* Taub (Boraginaceae), conhecida popularmente como pau branco, é aplicada na medicina tradicional no tratamento de feridas. Suas cascas são ricas em alantoína e possuem caráter adstringente (Costa et al., 2005). Além disso, existem relatos de ações farmacológicas cientificamente comprovadas, como cicatrizante, anti-inflamatória e regeneradora de tecidos necrosados (Pessoa e Lemos 1997).

Diante da importância dos inibidores de AchE e carência de trabalhos relatados na literatura, o presente estudo tem o objetivo de averiguar as principais classes de metabólitos secundários e avaliar a capacidade inibitória *in vitro* da AchE do extrato etanólico de *A. glazioviana*.

2. Objetivo

Identificar as principais classes de metabólitos secundários e avaliar a capacidade inibitória da enzima acetilcolinesterase do extrato etanólico de *A. glazioviana*.

3. Metodologia

3.1 Coleta e preparo da amostra

O material vegetal foi coletado em Agosto de 2017, no município de Barro – CE. O cerne do caule (300g) foi triturado e submetido ao processo de maceração à frio, em hexano por 72, seguida de destilação em evaporador rotativo sob pressão reduzida (15 mmHg), à 50°C, gerando 109 mg de extrato bruto 0,36 %. Após a secagem do material vegetal o mesmo procedimento à frio foi utilizado em etanol para a obtenção do extrato etanólico do cerne do caule de *Auxemma glazioviana* (EECCAG) tendo um produto de (15,67g) e um rendimento de 5,2 %.

3.2 Prospecção química

Para a determinação das classes de metabólitos secundários o EECCAG foi submetido a identificação das classes de fenóis e taninos (reação com cloreto férrico), flavonoides, (teste de variação de pH, com hidróxido de sódio e ácido clorídrico) e alcaloides (reação com Dragendorff) (Matos, 2009).

3.3 Bioensaio da inibição da acetilcolinesterase

O ensaio de inibição da atividade da acetilcolinesterase foi determinado pelo método descrito por Ellman et al., (1961). Foram adicionadas em placas de

V SEMANA UNIVERSITÁRIA DA URCA XXIII Semana de Iniciação Científica

07 a 11 de Dezembro de 2020 Tema: "Os impactos e desafios da pandemia COVID no ensino, pesquisa e extensão"

96 poços as seguintes soluções: 25μL lodeto de acetilcolina (15 mM), 125 μL 5,5ditiobis-[2-nitrobenzóico] na solução de Tris/HCl (50 nM, pH= 8, com 0,1 M de NaCl e 0,02 M de MgCl₂ 6H₂O (reagente de Ellman), 50 μL da solução de Tris/HCl contendo albumina sérica bovina, 25 μL do EECCAG numa concentração final de 2 mg.mL⁻¹. A absorbância foi aferida durante 30 segundos à 405 nm, em seguida foi adicionado 25 μL da enzima acetilcolinesterase e a absorbância lida a cada minuto durante 25 minutos. Foram extintos valores de absorbâncias referentes ao EECCAG, sendo a porcentagem de inibição da acetilcolinesterase calculada através da comparação das velocidades de reação (hidrólise do substrato) das amostras em relação ao branco. O padrão utilizado como controle foi a fisostigmina e os testes foram realizados em triplicata.

3.4 Análise estatística

Após normalização dos dados foi realizado teste de curva de regressão não linear pelo programa estatístico GraphPad Prism v5.01. Com os valores IC₅₀ das médias foi realizado o teste de variância com comparação múltipla entre pares pelo teste de Tukey, considerando significativos valores de P < 0.05.

4. Resultados

4.1 Prospecção química

Em relação à análise química, foram identificados importantes metabólitos secundários pertencentes a classe dos flavonoides, como flavonas, flavonóis e xantonas (Tabela 1).

Tabela 1: Prospecção química do EECCAG

Classe de metabólitos	1	2	3	4	5	6	7	8	9	10	11	
EECCAG	-	-	-	+	+	+	+	+	+	+	-	

1: Fenóis; 2: Taninos condensados; 3: Taninos pirogálicos; 4: antocianinas e antocianidinas; 5: Flavonas, flavonóis e xantona; 6: flavononóis; 7: flavononas; 8: chalconas e auronas; 9: leucoantocianidinas; 10: catequinas; 11 alcaloides. (+) presente e (-) ausente.

Segundo Dresler, Szymczak e Wójcik (2017) as espécies da família Boraginaceae apresentam uma grande variedade de compostos fenólicos, como flavonóides. A espécie *A. glazioviana* destaca-se pela presença de sesquiterpenos e quinonas terpenoídicas (Silva, 2017). Tais compostos são reconhecidos por serem bioativos com potencial antiinflamatório, hepatoprotetor, analgésico, antimicrobiano e antifúngico (Oza e Kulkarni, 2017).

V SEMANA UNIVERSITÁRIA DA URCA XXIII Semana de Iniciação Científica

07 a 11 de Dezembro de 2020 Tema: "Os impactos e desafios da pandemia COVID no ensino, pesquisa e extensão"

4.2 Bioensaio acetilcolinesterase

Com base nos resultados obtidos, o EECCAG apresentou IC $_{50}$ de 25,43 \pm 0,16 μ g/mL, demonstrando uma moderada inibição da AchE quando comparado ao controle positivo fisostigmina com IC $_{50}$ de 1,15 \pm 0,05 μ g/mL, como mostra a Tabela 2.

Tabela 2: IC₅₀ dos resultados do controle positivo e do EECCAG.

Amostra	IC ₅₀ (μg/mL)				
Fisostigmina (controle +)	1,15 ± 0,05				
EECCAG	25,43 ± 0,16				

Resultados semelhantes foram relatados por Trevisan et al., (2003) em uma concentração de 2,5 mg/mL o extrato de *A. glazioviana* apresentou um moderado potencial de inibição da enzima AchE com porcentagem de 43 %. Segundo Pietta (2000) os metabólitos secundários encontrados em *A. glazioviana* possuem propriedades antitumoral, anticarcinogênica, anti-inflamatória. Além disso, devido à baixa toxicidade, esses compostos são promissores para o desenvolvimento de medicamentos direcionados ao tratamento do mal de Alzheimer (Silva et al., 2019).

5. Conclusão

Os resultados obtidos com o EECCAG mostraram a presença de importantes metabólitos secundários da classe dos flavonóides e um moderado potencial de inibição da AchE. Dessa forma, a pesquisa busca servir como ponto de partida para o desenvolvimento de novos estudos com o intuito de produzir fármacos no tratamento de doenças neurodegenerativas derivados de produtos naturais.

6. Referências

Araújo, C. R. M.; Santos, V. L. dos A.; Gonsalves A. A. Acetilcolinesterase - AChE: Uma Enzima de Interesse Farmacológico. **Rev. Virtual Quim.**, 8 (6), 1818-1834, 2016.

Costa, J.G.M.; Pessoa, O.T.D.L.; Monte, F.J.Q.; Menezes, E.A.; Lemos, T.L.G. Benzoquinonas, Hidroquinonas e Sesquiterpenos de *Auxemma glazioviana*. **Quim. Nova**, Vol. 28, No. 4, 591-595, 2005.

Dresler, S.; Szymczak, G.; Wójcik, M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. **Pharm Biol.**; 55(1): 691–695, 2017.

V SEMANA UNIVERSITÁRIA DA URCA XXIII Semana de Iniciação Científica

07 a 11 de Dezembro de 2020 Tema: "Os impactos e desafios da pandemia COVID no ensino, pesquisa e extensão"

Ellman G.L., Courtney K. D., Andres V., Featherstone R. M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. **Biochemical Pharmacology**, 7, 88. 1961.

Forlenza, O. V. Tratamento farmacológico da doença de Alzheimer. **Rev. psiquiatr. clín**. (São Paulo), *32* (3), 137-148, 2005.

Matos, F.J.A. Introdução a fitoquímica experimental. 3 ed. Fortaleza: edições UFC, 150p. 2009.

Mota, W.M.; Barros, M.L.; Cunha, P.E.L.; Santana, M.V.A.; Stevam, C.S.; Leopoldo, P.T.G.; Fernandes, R.P.M. Evaluation of acetylcholinesterase inhibition by extracts from medicinal plants. **Rev. bras. plantas med.** vol.14 no.4, 2012. http://dx.doi.org/10.1590/S1516-05722012000400008

Oza, M. J.; Kulkarni, Y. A. Traditional uses, phytochemistry and pharmacology of the medicinal species of the genus *Cordia* (Boraginaceae). **Journal of Pharmacy and Pharmacology**, 2017 (no prelo).

Pessoa O.D.L.; Lemos T.L.G. Allantoin and fatty acid composition in *Auxemma oncocalyx*. **Rev Bras Farm** 78: 9–10, 1997.

Pietta, P.G. Flavonoids as antioxidants. **Journal of natural products**. 63 (7), p.1035-1042. 2000.

Silva, A.K.O. Prospecção química e farmacológica dos extratos de *Cordia glazioviana* Taub. e *Cordia oncocalyx* Taub. Tese (Doutorado em Química), Universidade Federal do Ceará – UFC, Fortaleza – CE. p.25. 2017.

Silva, W.M.B.; Pinheiro, S.O.; Alves, D.R.; De Menezes, J.E.S.A.; Magalhães, F.E.A.; Silva, F.C.O.; SILVA, J.; MARINHO, E.S.; De Morais, S.M. Síntese de complexos quercetina-metal, avaliação de anticolinesterase e antioxidante in vitro e in silico, e atividades toxicológicas e ansiolíticas in vivo. **Neurotoxicity Research.** 2019. doi: 10.1007 / s12640-019-00142-7

Trevisan, M.T.S; Macedo, F.V.V. Seleção de Plantas com atividade anticolinasterase para tratamento da doença de Alzheimer. **Quim. Nova**, Vol. 26, No. 3, 301-304, 2003

Vinutha, B.; Prashanth, D.; Salma, K.; Sreeja, S.L.; Pratiti, D.; Padmaja, R.; Radhika, S.; Amit, A.; Venkateshwarlu, K.; Deepak, M. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. **Journal of Ethnopharmacology**, v.109, p.359-63, 2007.